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Abstract. We discuss the definition of frequency-dependent electric and magnetic multi- 
pole moments. It is shown from classical electrodynamics that there are two types of 
magnetic multipole moments, ME(lmw) and MM(lmo), defined as moments of the 
magnetisation with an electric or magnetic spherical vector wave as weight function. The 
moment ME(lmw) contributes to the emission of electric multipole radiation. We define 
quantum-mechanical multipole operators in correspondence with the classical case and 
discuss Siegert’s theorem. 

1. Introduction 

The main issue of this paper is the correct definition of frequency-dependent electric 
and magnetic multipole moments. Siegert’s theorem (Siegert 1937, Sachs and Austern 
195 1) states that, to a good approximation, the transition amplitude for electric 
multipole radiation from a nucleus is determined by the matrix element of the electric 
multipole-moment operator 

P ( l m ) = /  r 1 Ylm(O,4)p(r) * dry (1.1) 

where Ylm is a spherical harmonic and ( r )  is the charge density. The important feature 
which simplifies the calculation of transition amplitudes is that the operator P(lm) has a 
form independent of the detailed dynamics of the nucleus. At higher photon energies 
the dynamics begins to play a role. Then the operator for electric multipole radiation 
can be written as a sum of two terms, customarily called the primary and secondary 
electric moments (Brennan and Sachs 1952), with the primary moment being given by 
an integral over the charge density with a frequency-dependent weight function, and 
the secondary moment depending on the detailed dynamics of the nucleus. If the 
second contribution can be regarded as small, then one has again a form of Siegert’s 
theorem. In the literature there is, however, no agreement on how the above separation 
into two terms is to be made (Brennan and Sachs 1952, Waroquier et al 1975). 

In this paper we demonstrate that the separation can be made unique by appealing 
to correspondence with the classical case. Already in classical electrodynamics electric 
multipole radiation can be shown to be radiated by a sum PE(lmw) - ioME(lmo), where 
PE(lmo) is a frequency-dependent electric multipole moment of the type (1.1) and 
ME(lmw) is a magnetic multipole moment. The latter is defined uniquely as a moment of 
the magnetisation with an electric vector wave as weight function. Magnetic multipole 
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radiation is emitted by a magnetic moment MM(lmw) defined as a moment of the 
magnetisation with a magnetic vector wave as weight function. Siegert's theorem holds 
in as far as the radiation emitted by ME(lmw) can be neglected. 

In 89 2 and 3 we deal with the classical definition of multipole coefficients and of 
frequency-dependent electric and magnetic multipole moments. In 9 4 we deal with the 
definition of multipole operators in quantum mechanics and discuss Siegert's theorem. 
Strictly speaking, the complete correspondence with the classical case can be 
established only for the Schrodinger Hamiltonian. For general Hamiltonian operators 
the question arises of which is the correct definition of the current density operator. 
This question will be studied in the following paper where we shall extend the 
correspondence with the classical case to general Hamiltonian operators. 

2. Spherical vector wave expansion 

We consider time-varying charge and current densities p(r, t )  andj(r ,  t )  and an intrinsic 
magnetisation A(r ,  t ) ,  which are localised around a fixed point in space. The variables 
are regarded as classical. We wish to describe the emitted electromagnetic radiation by 
means of a multipole expansion. We derive the electromagnetic fields from scalar and 
vector potentials, 

E = - v - (l/c)aA/at, B = V x A ,  (2.1) 

and choose the Coulomb gauge V.  A = 0. Then Maxwell's equations in a vacuum are 
equivalent to 

where y ( r ,  t )  is the total current density, 

y ( r ,  t )  = j(r ,  t )  + CV x A(r,  t ) .  (2.3) 

Hence 4 is given by the electrostatic Coulomb potential, 

(r, t )  = dr', 
Ir - r'I (2.4) 

and using the continuity equation 

we find for the vector potential the inhomogeneous wave equation 

where fL is the transverse part of the total current density. We make a Fourier 
transformation with respect to time, and define 

(2.7) 

and similarly for other quantities. 
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Far from the source the vector potential can be expanded in terms of outgoing 
spherical vector waves, so that asymptotically, for large r, 

m l  

A,(r)= (aE(lmw)AE(r, w)+aM( lmoME(r ,  U ) ) ,  (2.8) 
/ =0  m=-l  

where aE(lmw) and aM(lmo) are the electric and magnetic multipole coeficients, and the 
spherical vector waves are given by 

A E ( r ,  w )  = k-*VX (h$')(kr)Xim(8, d ) ) ,  A?,+(r, U )  = (-i/k)h!')(kr)Xm(8, d ) ,  
(2.9) 

where k = w/c is the wavenumber, h!')(kr) is a spherical Hankel function andXlm(8, 4 )  
is defined by 

XI,(@, 4) = [ l ( l +  ~)I - ' ' *LY~~(O,  41, (2.10) 

where L is the differential operator -ir x V and Y/,(8,@) are the spherical harmonics in 
the notation of Condon and Shortley (1935). We have normalised the solutions (2.9) 
such that the multipole coefficients are identical to those defined by Jackson (1962). 
They must be multiplied by -$i to obtain the corresponding coefficients of Blatt and 
Weisskopf (1952) (note that their source densities as defined by equations (3.1) and 
(3.2) on p 590 differ by a factor $ from ours). The solutions (2.9) are related by 

V x AF: = i k A E ,  V x A E  = - ikAE, (2.11) 

and have the parity properties 

(2.12) I M +  A E  ( - r )  = (- l)'+'A?; ( r ) ,  A F ( - r )  = (-1) Ai, ( r ) .  

Corresponding solutions of the homogeneous wave equation are 

A?:,O(r, w )  = k-2Vx ( j / (kr)Xm(@ 4)) ,  

where j l (kr )  is the spherical Bessel function which is regular at the origin. 

A E 0 k  w >  = (--i/k)jdkr)Xim(8, d ) ,  (2.13) 

3. Electric and magnetic multipole moments 

The inhomogeneous wave equation (2.6) can be solved by the method of Green 
functions, as indicated by Jackson (1962). Thus one finds for the multipole coefficients 

aE(lmw) = - 47rik3 5 f,(r).A?*(r, U )  dr, 
C 

aM(1mw) = 4Tik3 - I f , ( r ) .AF*(r ,  w )  dr, 
C 

(3.1) 

where we have performed an integration by parts in equations (16.88) and (16.89) of 
Jackson (1962). By Taylor expansion about the origin we decompose the current 
density into a sum of three terms, 

/ , ( r )  = -iwP,(r) + CV x M,(r)  + CV x A w ( r ) ,  (3.2) 
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where P,(r) is the electric polarisation, 
m 

P,(r) = I r'p,(r') c s[(r'.V)n8(r)] dr', 
n=O ( n  + l ) !  

and M,(r) is the orbital magnetisation, 

n + l  m 1 
C n=O (n +2)! M,(r)=-I r'xj,(r') 1 (-1)n- [(rf.V)"8(r)] dr'. 

Similarly the intrinsic magnetisation can be expanded as 
m 

&,(r) = I A,(r') ,,=o 1 w[(r'.V)nt3(r)] n!  dr'. (3.5) 

In order to prove the basic decomposition (3.2) we consider the integral 

I j,.F d r  = -iw P,.F d r  + c (V xM,)  .F dr  I I (3.6) 

for an arbitrary test function F(r) and show that substitution of (3.3) and (3.4) leads to 
an identity. By partial integration and use of the continuity equation (2.5) one finds 

Similarly 

C J  ( V x M , ) . F d r  

= c  M,.(VxF)dr I 

Adding (3.7) and (3.8) one sees that the last terms cancel while the first add up to 
j,. F dr. The intrinsic magnetisation &,(r) is included straightforwardly. The de- 

composition (3.2) is a continuum version of the atomic series expansion given by de 
Groot (1969). 

The tensors multiplying V"8 ( I )  in (3.3-5) will be called the Cartesian electric and 
magnetic multipole moments. From (3.3) one finds the identity 

I Po(r).F(r) d r  = I rp,(r).IO1 F(hr )  dh d r  (3.9) 
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for an arbitrary vector field F ( r ) ,  and from (3.4) 
1 I (VxMu( r ) ) .F ( r )d r=-  ( rx ju( r ) ) . I  (VxF(hr ) )dh  dr. (3.10) 

C 'I 0 

Substituting (3.2) into (3.1), one can write the multipole coefficients as 

aa(lmo) = a: (Imw) + a E ( h a w )  + a f ( / m u ) ,  

a M ( l m w ) = a ~ ( l m w ) + a ~ ( l m w ) ,  
(3.11) 

with 

aE(lmw)=47rik3 Po(r ) .EE*(r ,  w )  dr, I 
aE(lmw)=47rik M,(r).BE*(r,w)dr, ' J  (3.12) 

a l ( l m w )  =47rik3 Mo(r).BEo*(r, w )  dr, I 
and similarly a g M ( l m w ) .  In (3.11) we have used 

aL(lmo)=47rik3 Pu(r) .EEo*(r ,w) d r = 0 ,  (3.13) 

noting that EEo is tangential, whereas (3.9) shows that P is radial. The fact that 
a E ( l m w )  does not vanish shows that magnetic multipole moments can emit electric 
radiation. 

Corresponding to the multipole coefficients (3.12) we define frequency-dependent 
spherical electric and magnetic E- and M-multipole moments by 

I 

PE(lmw, t )  = [ P(r ,  t ) .EE*(r ,  w )  dr, 
J 

ME(lmw, t )  = M(r, t).B?*(r, 0) dr, 

M M ( h w ,  t )  = M(r, t ) .  BEo* (r, w )  dr, 

I 
I 

(3.14) 

and similarly for the intrinsic magnetisation &(r, t ) .  The multipole moments are 
dynamical variables defined for each value of 0. In order to investigate the multipole 
moments for small values of w it is convenient to use (3.9) and (3.10) to transform the 
definitions (3.14). Thus one finds 

PE(lmw, t )  = rp(r, t ) .  E z *  (hr, U )  dh dr, I Io' 
where 

(3.15) 

(3.16) 

Taking the scalar product in (3.15) and performing the integration over A ,  one can also 
write 

(3.17) 
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with 

Hence one finds, for small values of U ,  

Similarly 

(3.18) 

(3.19) 

(3.20) 

which becomes, for small values of w,  

i 
ME(hlW, f )  E k' I r'+'j(r, f ) .VYk dr. (3.21) 

c[I(I+ l)]"' (I + 3)(2I+ l)!! 

Finally, 
1 ik MM(lmw, I ) = - /  ( rXj(r ,  t)).I0 hAE*(Ar)dh d r  

c 

For small values of U ,  

"-' r ' Y L V . ( r x j ( r ,  t))dr. 
-1 

MM(lmw, t )  
c[ l ( l+  1 ) y  (21 + l)!! 

(3.22) 

(3.23) 

Note that ME is smaller than MM, approximately by a factor kR, where R is the 
dimension of the source. Expressions similar to (3.20-23) can be derived for 
AE(lmw, t )  and AM(lmW, t ) .  

By analogy with the moments (3.11) we also define 

f ( r ,  t) .AE*(r,  U )  dr, fM(lmw, t )  = f ( r ,  f).AkO*(r, w )  dr. 

(3.24) 

These are related to the moments defined above by 

In the next section we turn to quantum mechanics and compare the definition of electric 
and magnetic multipole operators with that of the classical dynamical variables. 



Multipole moments and Siegert's theorem 123 

4. Multipole operators in quantum mechanics 

We consider a general Hamiltonian operator of the form 

H=HA'((pk-(ek/c)A(rk) ,  rk , sk})+HRad- l  &(r) .B(r)dr ,  (4.1) 

where HA' is the Hamiltonian for the atom or nucleus in interaction with the radiation 
field, HRad is the Hamiltonian for the free radiation field, 

and the intrinsic magnetisation &(r) is defined by 

&(r) = 1 pjsjS(r - ri), 
i 

(4.3) 

where the s, are spin operators and the pi are values of the intrinsic magnetic moments. 
The vector potential A( r )  has the expansion (Moskowski 1965) 

(4.4) 

where R is the radius of a large sphere with reflecting boundary conditions and the first 
sum runs over the discrete frequencies on = n(.rr/R)c with positive integers n. The 
operators aE,M(lmw), ~ E , M  (Imo) satisfy the commutation rules for creation and 
annihilation operators, e.g. 

t 

[aE(lmo), cy& ( ~ m ' o ' ) ]  = s ~ ~ , s ~ ~ , s ~ ~ , .  (4.5) 
It is assumed that the longitudinal Coulomb interaction is included in (4.1) as a potential 
energy term. 

Since the interaction with the radiation field is weak, one can expand HA' in powers 
of A. Thus we obtain 

(4.5) H=Ho+ V I +  v2+ .  . . , 
where 

Vl = VYrb - I ( r ) .B(r)  d r  (4.7) I HO = HOA' ( b k ,  rk, sk}) +HRad, 
with 

(4.8) 

By definition, the operator H i ,  is linear in A,(rj). To make the definition precise it is 
assumed that in writing out its form no use is made of the commutation relation between 
rj and pi. In the following we shall restrict ourselves to first-order radiation processes 
determined by the term VI. The transition probabilities for such processes are given by 

Wfi = (2dWKfI V1(A(r))li)I2p(~L (4.9) 

where / i)  and If) are the initial and finai states of H? + IfRad, and p(E)  = ( R / ~ h c )  is the 
density of photon states per unit energy. Substituting from (4.4), we see that absorption 
processes involve the matrix element (bl VYb (AzMo(r,  @)) la )  where la) and Ib) are the 
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initial and final eigenstate of HOA’, whereas emission processes involve the matrix 
element (bl vyrb ( ~ 2 ~ ” ( r ,  w)) la>.  

We shall use the identity 

(4.10) 

where g(r)  is an arbitrary scalar function. To prove (4.10) one considers the trans- 
formation 

(4.11) 

Comparison with the expansion of the exponentials leads directly to (4.10). 
Now suppose the electric spherical vector wave is written as a sum of two terms, 

A E ( r ,  U )  =vfim(r, w)+glm(r, w ) .  (4.12) 

Then one can define corresponding operators P(lmw) and G(lmw) by 

P ( l m w )  = vyrb (Vfim(r, U ) ) ,  G(lmw) = VYb (glm(r, U ) ) .  (4.13) 

Applying the identity (4.10), one has 

~ ( l m w )  = -1 5 i [ H p , f i m ( r j ,  w ) ] ,  (4.14) 
i c i i  

which suggests the definition of the operator 

e ,  

i c  
F(lmw) = -1 1 f lm(r j ,  w )  (4.15) 

and the interpretation of the dot as a Heisenberg time derivative defined by H p .  The 
matrix element for absorption now has a part which can be written 

(61 VYb (Vfim(r, w ) ) l a )  = (i/h)(Eb -E, ) (b lF(h“la) ,  (4.16) 

where are energy levels of the unperturbed atom. The calculation of the matrix 
element of F(lmw) is obviously much simpler than that of VYrb(AF(r,  U ) ) ,  since 
F(lmw) is a sum of single-particle operators and has a form which is independent of the 
dynamics. If the matrix element of G(lmw) can be argued to be small, then the 
calculation of transition probabilities for electric multipole radiation is much simplified. 

In the low-frequency limit, A E ( r ,  w )  is in fact a pure gradient, as is evident from the 
form 

(4.17) A E ( r ,  w )  = 

In the limit w + 0 the last term can be neglected and A E ( r ,  w )  can be approximated by 

i 
( V [ ( j d k r )  + krji ( k r ) )  Y ~ m l  + k2rjdkr) Y l m ) .  k 2 [ l ( l  + l)]’’’ 

(4.18) 

Hence the above state of affairs prevails, and the calculation of matrix elements for 
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electric multipole radiation reduces to calculating those of 

(4.19) 

This is known as Siegert’s theorem (Siegert 1937, Sachs and Austern 1951). 

and Sachs (1952) have used the form (4.17) and define 
At higher frequencies the separation into two terms in (4.12) is not unique. Brennan 

as the primary electric multipole moment operator. They regard 

(4.20) 

(4.21) 

as the time derivative of a secondary electric multipole moment operator. On the other 
hand, Waroquier et a1 (1975) make a different splitting and use 

f i m ( r ,  U)= (i lk2)[(/+ 1 ) / l I 1 ” j l ( k r ) y l m  (4.22) 

for the primary operator and the remainder for the secondary one. If one neglects 
G(1mw) in either case, one clearly finds two different approximate values for the 
transition probability. In the low-frequency limit the two values agree. 

Here we propose to make the separation in (4.12) unique by appealing to cor- 
respondence with the classical case. This suggests that the splitting is made in such a 
way that the first part corresponds to the electric multipole operator PE(lmw) and the 
second part to the magnetic E-multipole operator M E ( h w ) .  Instead of (4.17) we write 

where gl(kr)  has been defined in (3.18). Now the operator F(1mw) becomes 

(4.23) 

(4.24) 

Slightly modifying the prefactor and taking the Hermitian conjugate, we define the 
electric multipole operator as 

PE(1mw) = iwFL ( lmw) 
or 

(4.25) 

Comparison with (3.17) shows that this definition corresponds exactly with the classical 
expression. The operator G(1mw) which follows from (4.23) is given by 

(4.26) 

Comparison with (3.20) for the case where H p  is given by the Schrodinger Hamil- 
tonian suggests that one can write 

G(1mw) = -ML ( lmw) ,  (4.27) 
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where the magnetic E-moment operator is defined by 

(4.28) 

where j o ( r )  is the current density operator corresponding to the unperturbed Hamil- 
tonian H?. Again this agrees exactly with the classical definition (3.20). That (4.28) is 
in fact the correct definition for general Hamiltonian operators H? will be shown in the 
following paper (Meister and Felderhof 1980). Using (4.13), (4.16), (4.24), (4.25) and 
(4.27) we find that the matrix element for emission of electric multipole radiation is 
given by 

Since, for emission Eb -Ea = -hw, we may write, for matrix elements between states 
satisfying this condition, 

(bl VdAK*(r, u))la) 

= -(b/PE(lmw) +ME(lmu) +d?E(lmu)la) (Eb -Ea = -flu). (4.30) 

Neglect of the term with G(1mw) now has the clear physical significance that the 
contribution from the magnetic E-multipole moment ME(lmu) is omitted. If this is 
done, and if the contribution from A E ( l m w )  is also omitted, one is left with the matrix 
element of PE(lmo) given by (4.25), which is a simple operator independent of the 
dynamics. Siegert’s theorem can be generalised to the frequency-dependent multipole 
moment operators and now reads: the transition amplitudes for emission and absorp- 
tion of electric multipole radiation cac, to a good approximation be calculated from the 
matrix elements of the frequency-dependent electric multipole moment operator 
PE(lmw). How good the approximation is must be estimated from a more detailed 
calculation. For dipole transitions in nuclei with photon energies of the order of 
10 MeV, such a calculation shows that the contribution from the magnetic E-moment 
ME to the transition probability is of the order of one per cent or less. However, for the 
nuclear photon effect, where higher photon energies come into play, the contribution 
from ME(lmu) can be appreciable. For a He4 nucleus and a photon energy of 200 MeV 
the contribution is about ten per cent. The contribution from the intrinsic moment 
d ? E ( l m ~ )  is even larger. 

Comparison with (4.23), (4.26) and (4.27) suggests the definition 
Finally we consider the magnetic M-multipole moment operator MM(lmu).  

~ M ( l m u ) =  -vYrb(~Eo*(r ,  w ) ) .  (4.31) 

For the Schriidinger Hamiltonian this can be written 

M d l m w )  = ( l / c )  5 jo(r )*AEo*(r)  dr, (4.32) 

hexac t  agreement with the classical definition !3.14). In the following paper we show 
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that (4.32) is also valid for more general Hamiltonian operators. The matrix element 
for emission of magnetic multipole radiation can be written 

(bj VlfAf;l,o*(r, w ) ) l a )  = -(b/MM(lmw) +MM(lmo)la) (4.33) 

in analogy to (4.30). 
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